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This subject is fundamental to anyone who looks at the heavens; it is aesthetically
and mathematically beautiful, and rich in history. Yet I’m not aware of any text which
treats time and the sky at a level appropriate for the audience I meet in the more technical
introductory astronomy course. The treatments I’ve seen either tend to be very lengthy and
quite technical, as in the classic texts on ‘spherical astronomy’, or overly simplified. The
aim of this brief monograph is to explain these topics in a manner which takes advantage
of the mathematics accessible to a college freshman with a good background in science and
math. This math, with a few well-chosen extensions, makes it possible to discuss these
topics with a good degree of precision and rigor. Students at this level who study this text
carefully, work examples, and think about the issues involved can expect to master the
subject at a useful level. While the mathematics used here are not particularly advanced,
I caution that the geometry is not always trivial to visualize, and the definitions do require
some careful thought even for more advanced students.

Coordinate Systems for Direction

Think for the moment of the problem of describing the direction of a star in the sky.
Any star is so far away that, no matter where on earth you view it from, it appears to be
in almost exactly the same direction. This is not necessarily the case for an object in the
solar system; the moon, for instance, is only 60 earth radii away, so its direction can vary
by more than a degree as seen from different points on earth.
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But for stars and more distant objects we can ignore this complication – for a first approxi-
mation we need only specify the direction of the star, rather than its full three-dimensional
position in space.

To specify a direction in space, we use celestial coordinates. These are broadly anal-
ogous to the familiar Cartesian ‘x-y’ coordinates you know about – one specifies some
numbers, and these serve to specify what you want, in this case a direction in space rather
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than a point on a plane. A key idea in what follows is that directions in space map in a

straightforward way onto points on a sphere. To see this, imagine drawing vectors from
the center of a sphere to its surface; vectors drawn in different directions will intercept the
sphere at different points, and different points all lie in different directions from the center
– in other words, there is a one-to-one correspondence between directions and points at
the surface of the sphere. (That’s true of any convex figure, but a sphere is especially
convenient.) Because of this correspondence, it’s conventional to imagine an arbitrarily

large sphere around the earth to represent the directions of objects in space. This sphere
is called the celestial sphere. It is purely a mathematical construction, with no physical
reality, but it is an extremely powerful conceptual tool.

So, our problem of representing directions in space reduces nicely to the problem of
coming up with coordinates to represent points on the surface of a sphere. This problem
is already familiar from geography, which uses latitude and longitude. We apply a broadly
similar set of coordinates to the sky.

Before discussing coordinates, we should explore some aspects of spherical geometry,
which is not usually covered well in standard mathematics courses. First, let’s think a
little bit about angles in general. In a circle drawn on a flat piece of paper, it’s obvious
that an angle measured at the center of a circle is proportional to an arc measured along
the circle. If θ is the angle in radians, R is the radius of the circle, and A is the length of
the arc, then

A = θR.

This is also true of arcs measured along the surface of a sphere, but in spheres there is an
important distinction between a great circle and a small circle. A great circle
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G2

Great Circles (G1 and G2) and a small circle (S) on a sphere
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is a circle drawn on the surface of a sphere, the plane of which passes through the center of
the sphere; by contrast, the plane containing a small circle does not pass through the exact
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center of the sphere (close doesn’t count!). An an example, every line of constant longitude
on the earth is a part of a great circle, as is the equator; but every line of constant latitude
except the equator is technically a small circle, even though some of them are nearly as big
as the equator itself.

Here are some properties of great circles which are useful and help illustrate what a
great circle is.

• A great circle divides the surface of a sphere into two exactly equal parts.

• If any two great circles intercept, they intercept at two points which are exactly
opposite each other (like points A and B in the diagram).

• The shortest distance on the surface of a sphere between any two points on the surface
is along the great circle which connects the two points.

Great circles are also useful because of their connection with angles. We’ll often be
interested in the angular distance between objects – the angle between the directions to
the two objects. Because we live (by definition) at the exact center of the celestial sphere,
the angular distance between two objects is the angle subtended by the two objects at the
center of the celestial sphere – in other words, the angle between lines drawn from the
objects to our position at the center of the sphere. If we draw a great circle which passes
through the two objects, the length of that arc will be A = θR, where R is the arbitrary
radius of the celestial sphere. Therefore the arc length along the great circle connecting the
objects’ positions is directly proportional to the angular distance between the two objects.
Because the radius R of the celestial sphere is arbitrary, we can effectively ignore it by
calling it unity (one), and treat the arc length as being the same thing as the angle. So
we may use a great-circle arc lengths as a proxy (or ‘stand-in’) for the angle subtended by
two objects. This makes great-circle arcs especially useful.

Arcs along any small circle still subtend an angle at the center of the circle, and that
angle is (again) A divided by the radius, but now the appropriate radius is that of the

small circle, which is no longer the radius of the sphere. And the center of the sphere is no
longer the center of the circle along which we’re measuring, so angles along a small circle
do not correspond directly to angles subtended between objects.

Now we can look a little more closely at the coordinate systems we use for spheres. The
usual way of specifying points on a sphere’s surface is through a spherical-polar coordinate
system. Latitude and longitude are the most familiar example, so we’ll use them as our
first example. A spherical-polar system depends on having a pole, such as the earth’s north
pole. This in turn defines an equator, which is the set of all points 90 degrees away from
the pole. One then selects a zero point somewhere along the equator; for geographical
coordinates, the zero point is the longitude of the original Royal Greenwich Observatory
near London. There’s no compelling scientific reason for this – it’s just an accident of the
ebb and flow of imperial power.

The two coordinates used on earth are latitude (denoted φ), which is angular distance
from the equator (positive north, negative south), and longitude (denoted λ), which is
angular distance along the equator from the zero point to the east-west position of the
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point, as shown in the accompanying figure. Note that the equator is the only east-west
great circle, and the great-circle arc makes arcs and angles equivalent. A relatively recent
convention is that longitude λ is to be measured positive eastward, and negative westward.
Notice how lines of constant longitude grow closer together towards the pole. The radius
of the small circle at latitude φ is R cosφ, where R is the radius of the earth. So the length
of a small-circle arc between longitudes λ1 and λ2 at latitude φ is

arc length at latitude φ = R(λ2 − λ1) cos(φ).
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Equatorial Coordinates - RA and dec

Now it’s time to finally introduce the most important set of celestial coordinates, which
are called equatorial coordinates. As I remarked above, spherical-polar coordinates are
angles, and they require that you specify a pole. The pole used for equatorial coordinates
is the direction of the earth’s axis. The point where the direction of the earth’s axis –
the north part, that is – intercepts the celestial sphere is called the North Celestial Pole,
which we’ll abbreviate NCP. In a time exposure of stars near the NCP taken with a camera
fixed to the ground, the stars make arcs centered on the NCP. Another picturesque way of
thinking of the NCP is to imagine placing an infinitely long stick through the earth along
its axis; if you view this stick from someplace in the earth’s northern hemisphere, it will
appear to rise above the horizon in the north and extend off into the distance. By the laws
of perspective its far end will disappear at the NCP – the direction of the earth’s axis. The
NCP lies very close to the star Polaris (which, contrary to many people’s impressions, is
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not particularly conspicuous). Southern hemisphere observers see a South Celestial Pole,
which doesn’t have any bright star near it.

If you stand on the north pole of the earth, the north celestial pole is directly overhead
in the sky – it lies in your zenith, which is another name for the point straight up in the
sky. If you stand on the equator, the north celestial pole lies on the horizon, due north,
and the south celestial pole lies on the horizon due south. At any intermediate latitude,
the (smallest) angle between your horizon and the north celestial pole is just equal to your
geographic latitude. So at Kitt Peak, in Arizona, which is at a geographic latitude of 32
degrees, the north celestial pole is 32 degrees above the horizon. The angular distance
of an object above the horizon is called its altitude; the altitude of the celestial pole is
equal to your latitude. Note that altitude is measured along a great-circle arc which passes
through the object and the zenith.

The existence of a pole implies the existence of a celestial equator, which is the set
of all directions 90 degrees from (either) pole. If you stand on the north or south poles,
the celestial equator is identical to your horizon. If you stand on the earth’s equator, the
celestial equator is perpendicular to your horizon and intercepts the horizon at the due
east and due west points, and passes through your zenith. At intermediate latitudes, the
celestial equator still crosses the horizon due east and due west, but the angle it makes
with the horizon is equal to your geographic colatitude, which is just 90 degrees minus your
latitude. At its highest point the celestial equator’s altitude is equal to your colatitude.

Now that we have our pole and equator defined, we can introduce our two coordinate
angles, right ascension and declination. Right ascension is sometimes abbreviated RA,
and it is standard to use the Greek letter α for right ascension. Declination is sometimes
abbreviated as dec, and the Greek letter δ is used.

Right ascension is the longitude-like coordinate – it measures east-west position. Dec-
lination is the latitude-like coordinate – it measures north-south position. Just as there is
an arbitrary zero point for longitude on earth (the observatory at Greenwich, near London)
there is a zero point for right ascension. This is called the First Point of Aries. As it turns
out, it is not arbitrary, but we may consider it so for now. The zero point of declination
is not arbitrary, but is rather the celestial equator.

Right ascension increases eastward on the sky. Declination increases northward on the
sky; northern declinations are positive and southern declinations are negative.

RA and dec can be specified in any units used for angles – they can be degrees, radians,
or whatever. However, there is a custom which is still used today, and while this seems
arcane at first there are some good arguments for keeping it.

• Declination is measured in degrees, minutes, and seconds. The minutes and seconds
used for degrees are called minutes of arc and seconds of arc, and are often denoted
arcmin and arcsec. The relation is the same as with time units – an arcmin is 1/60
of a degree, and an arcsec is 1/60 of an arcmin, so an arcsec is 1/3600 of a degree.
The notation used for degrees, minutes, and seconds is ◦ for degrees, ′ for arcmin,
and ′′ for arcsec, so that 31 degrees, 57 arcmin, and 12.3 arcsec would be written as
31◦ 57′ 12′′.3. Note that the ′′ is written by the decimal point.
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• Right ascension is measured in a different unit, in which a full circle is 24 units. In
other words, the full circle is divided just as the day is divided into hours, and the
angular unit for right ascension is named identically to the time unit – it’s called the
hour. An hour of right ascension is divided into minutes and seconds just like the
degree (and like the usual hour). Although these minutes and seconds are really being
used to measure angles, they are called minutes and seconds of time to differentiate
them from portions of a degree. Hours, minutes and seconds are denoted as h, m,
and s, so that a right ascension of 4 hours, 42 min, 32.33 sec would be written as
4h 42m 32s.33. Note that the superscript s is written together with the decimal point.
Right ascensions run from 0h to 24h, where they wrap around back to zero.

A little thought shows that if 1 circle = 360 degrees = 24 hours, then

1 hour = 15 degrees.

And because the structure of degrees and hours is exactly parallel,

1 minute of time = 15 arcmin

and

1 second of time = 15 arcsec.

The structure of 60s used for time and angles is called sexigesimal notation. It is
a little tricky because one must convert a sexigesimal triplet into an equivalent decimal
number before doing any arithmetic. Luckily, most ‘scientific’ calculators have some kind
of ‘hours to decimal’ conversion built in*. So the first step in doing any problem which
involves taking (say) trig functions of a right ascension is to convert the sexigesimal right
ascension to decimal hours, and then convert to radians or degrees (as appropriate) before
evaluating the trig function.

You will recall that I made a big deal about how angles are equivalent to arcs along
great circles. The figure shows how right ascension and declination are measured as arcs
– right ascension is measured along the equator, eastward, and declination is northward.
The angles subtended at the center of the sphere – where we observe – are shown drawn

* Computer programs can be arranged to do these conversions at input and output,
but they should note that, in a small band just south of the equator, the leading field in
a declination will be ‘−0’ which evaluates to a positive number; the minus sign must be
converted separately as a character on input.
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in lightly.

First Point of Aries
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dec
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Celestial Equator

The system of right ascension and declination is nearly fixed in space – it’s a first
approximation to what physicists call an inertial reference frame, which is not accelerating
or (more appropriately for a system which specifies only directions) it is not rotating. As
we’ll see later, it isn’t quite inertial, because the direction of the earth’s axis which defines
the system is not perfectly constant on long time scales.

The meridian, hour angle, and sidereal time

Now we turn our attention more closely to what an observer on the earth sees.

From a level site (such as the ocean) you can see half the celestial sphere at any one
time. The horizon is a great circle, so it divides the celestial sphere into two parts.

One can imagine the horizon as a plane which is tangent to the earth at the point
you are standing. The circle at which this plane intercepts the celestial sphere divides the
celestial sphere into visible and invisible portions. Because the celestial sphere is infinitely
large, the size of the earth doesn’t matter, so the geometrical horizon splits the celestial
sphere into two precisely equal parts *.

As the earth rotates, your horizon plane rotates with it. The diagram shows how the
plane rotates in space. For a mid-northern observer, some directions toward the north (for a
northern observer) will always be to one side of the plane through the entire rotation – these

* The actual horizon is affected slightly by atmospheric refraction
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directions are called north circumpolar directions. The extent of the north circumpolar
region depends on your latitude; north circumpolar directions lie inside a cone whose axis is
parallel to the earth’s axis and whose opening half-angle is equal to your latitude. A similar
cone toward the south – the south circumpolar region – never rises above the horizon. All
directions in between will rise and set with each rotation of the earth.

Earth

Objects in this

Earth’s Axis (to NCP)

φ

Your latitude = φ

North Circumpolar

South Circumpolar (never rises)

  (never sets)

region will rise and set.

As I mentioned earlier, if one takes a time exposure of the stars around the NCP with the
camera fixed, the star images make big arcs around the NCP, because of the rotation of
the earth. The arcs which just graze the horizon delineate the extent of the circumpolar
region.

Now imagine a great circle which splits your observed sky into east-west halves. This
would come out of the horizon at the due south point, pass through your zenith, through
the north celestial pole (for northern sites), and intercept the horizon again at the due
north point. This arc is called your meridian. It is fixed in your sky, not fixed among
the stars. As the earth turns, stars will appear to pass by your meridian. Your meridian
will change if you travel east and west, but will remain the same if you travel due north
or south. When we say ‘meridian’ we will generally mean only that part of the meridian
which stretches from the celestial pole, across the zenith, and down to the southern horizon
(for northern sites). The figure illustrates this definition of meridian drawn on a celestial
sphere; note that the horizontal circle (drawn as an ellipse to show perspective) represents
your horizon. One can do this because the celestial sphere is a sphere of arbitrary size
which represents directions; the horizon shown is just the set of directions which correspond

8



to your horizon.
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A star on your meridian is as high as it will ever get in your sky. If the star happens
to be at a declination equal to your latitude, it will pass directly through the zenith when
it appears on your meridian.

As I mentioned, as the earth turns from west to east, stars appear to pass across
your meridian from east to west. The right ascension toward which your meridian points
will change at a constant rate. Anything which changes at a constant rate can be used to
measure time. The right ascension of the point on your meridian is therefore a sort of clock,
which is used to define a new kind of time, called Sidereal Time. The sidereal time is simply
the right ascension of your meridian. This is why right ascensions are customarily measured
in hours – the constant rate of rotation of the earth makes for a natural connection between
east-west angles and time. In fact, it’s a shame that geographical longitudes are not
measured in hours, because then it would be simpler to see the relation between different
time zones on the earth’s surface. We’ll explore the relationship between sidereal time
and regular ‘solar’ time a little later. In the meantime, you might note that because your
meridian is a strictly local quantity (it’s different in Boston than it is in Buffalo), the
sidereal time is also strictly local.

But first it’s time to define yet another angle. You’ll recall how a spherical polar system
requires a pole and an arbitrary zero point along the equator from which to measure the
longitude-like coordinate. As the sky appears to slip westward, the zero point of right
ascension (the first point of Aries) appears to go round and round when viewed from
a point on the earth. Now, suppose that we take our meridian as the zero point of a
new longitude-like coordinate, while retaining the NCP as our pole. Note that this new
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longitude-like coordinate and RA will continually slip past each other, exactly as stars
continually cross over the meridian from east to west.

The longitude-like coordinate for this system is called Hour Angle. Like right ascen-
sion, it is measured along the equator, but now it is measured in the opposite sense –
positive westward. Hour angle is customarily measured in hours, minutes, and seconds,
just as is right ascension. The hour angle of an object on the meridian is zero; as it moves
westward, its hour angle increases up to +12 hours, at which point it is said to be at lower

culmination. At that point its hour angle switches to −12 hours and counts back down to
zero on the meridian.

The hour angle of the sun is roughly equal to the time of day, if you take noon as zero
and adjust times in the morning appropriately. For instance, at 9 AM the hour angle of
the sun is about −3 hr; at 3 PM, it is about +3 hr.

This diagram shows the hour angle, the right ascension, and the declination of a star
west of the meridian and north of the equator.
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Hour angle, sidereal time, and right ascension are all tied together in a single relation,
which you should commit to memory if you think you’ll ever use this stuff:

Hour angle = Sidereal Time − Right Ascension.

This encapsulates the whole discussion. Note that when HA = 0, ST = RA – just as
defined above. One can see as well that the sidereal time is equal to the right ascension of
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the first point of Aries. The following diagram is a schematic view of all these east-west
angles as seen from the north.
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Schematic Diagram of HA, ST, and RA
as viewed from the north celestial pole

(α = 0)

(= α)

This illustrates that 

Telescope Mountings

We’ve seen that the earth’s rotation causes stars to move across the sky from east to
west. A telescope mounted on an equatorial mount takes advantage of this symmetry. We
can reinforce the concepts of celestial coordinates by considering how such a mounting is
constructed.

Most of the time telescopes are mounted with two bearings perpendicular to each
other. The most obvious way to orient these bearings is to have one which pivots about a
vertical mounting, swinging left and right, and another, carried by the first, which swings
up and down. A cannon is mounted this way, with a turret which swings left-right and an
elevating mechanism which can lift the angle of the barrel. This kind of mounting is called
an altitude-azimuth, or altaz mounting. An altaz mounting is easy to engineer, because
the moving loads do not change their orientation to the bearings; the left-right axis always
carries the load along the axis, and the up-down axis always carries the load perpendicular
to the axis.

An altaz mounting does not track stars in a natural way. In general, a star moving
across the sky moves both left-right and up-down at the same time; therefore, the telescope
must be driven in both axes at once to follow a star. Furthermore, the field of view rotates.
One can see that this must be the case by considering an object rising in the east; north
will be to the upper left. But when the object transits later, north will be to the top.
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Altaz telescopes therefore also need to be equipped with precise instrument rotators for
any picture taking.

An equatorial mounting avoids these difficulties by pointing one of the axes at the
north celestial pole. This makes the polar axis parallel with the axis of the earth. So as the
earth rotates one way, the polar axis can be driven the other way at a rate of one revolution
per sidereal day the other way to follow the star. The declination axis, perpendicular to
the polar axis, carries the telescope north-south. As the mounting moves, the telescope
stays in a perfectly fixed orientation with respect to the sky, so an instrument rotator is
not needed. When showing the sky to people, I’m fond of pointing out that the telescope
and its mount are the only things in the room which are not rotating (how could they be?
They’re fixed with respect to the distant stars!).
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Despite the extra complication, the largest modern telescopes are on altaz mountings,
because computers can now easily keep up with the calculations needed, and because the
mechanical engineering of an altaz mount is so much simpler than an equatorial mounting.
Amateur astronomers who intend to use their telescope only visually at low power often use
altazimuth telescopes also, especially the very simple and inexpensive Dobsonian design
pioneered by John Dobson of the San Francisco Sidewalk Astronomers. But there are a
great many equatorially mounted telescopes in both amateur and professional hands.

12



The Apparent Motion of the Sun

From temperate and tropical latitudes the sun appears to rise in the east, cross the
meridian around noon, and set in the west. This very rapid motion across the sky is of
course caused by the earth’s rotation on its axis; this is called the diurnal rotation of the
earth, and the apparent motions of any bodies caused by diurnal rotation are called diurnal
motions. They aren’t real motions, of course, only apparent.

As well as rotating on its axis, the earth revolves around the sun, completing one
revolution each year. The earth’s orbit is an ellipse. A line drawn from the sun to the
earth sweeps out a surface which lies in a plane, which is the plane of the earth’s orbit.
This plane is called the ecliptic plane. Its interception with the celestial sphere defines a
great circle called the ecliptic.

The line of sight from the earth to the sun lies in the plane of the earth’s orbit, so it
lies in the ecliptic plane, and the direction of that line of sight lies on the ecliptic. So, as
the earth orbits the sun, the sun appears to move along the ecliptic in the sky. If we could
see stars during the daytime, we would see the sun gradually changing its position against
the background of the much more distant stars, because we view the sun from a moving
platform. Even though we cannot see stars during the daytime, it is easy to imagine a
procedure by which we could infer the position of the sun as referred to the distant stars.
For instance, we could map the stars along the ecliptic by measuring their right ascensions
and declinations; then we could infer the position of the sun against the stars by (say)
finding which stars are passing near the meridian at midnight. The sun’s right ascension
would be the right ascension of those stars minus 12 hours (half a circle).

The earth completes a full trip around the sun every year. There are 360 degrees in
a circle, and a little over 365 days in a year, so the earth moves on average a little less
than one degree per day along its orbit; a radius vector from the sun to the earth moves
a little less than one degree per day. Therefore the line of sight from the earth to the sun
— which defines the sun’s position in the sky – also moves a little less than one degree per
day. So the sun moves a little less than one degree per day along the ecliptic.

Just as the earth rotates from west to east, its revolution around the sun is also from
west to east (that is, counterclockwise when viewed from the north). With some thought
one can see that the sun must therefore appear to move from west to east along the ecliptic.
So, even while the sun’s diurnal motion carries it very quickly across the sky from east
to west, its annual motion carries it gradually backwards against the background of the
distant stars which define the non-rotating reference frame. Another way of looking at
this is that the apparent diurnal rotation of the stars is slightly faster than the average
apparent diurnal rotation of the sun. The earth’s motion around the sun causes the sun to
gradually lag behind the apparent motion of the stars, by about one degree per day. After
one year has gone by, the sun has ‘slipped’ by a whole circle with respect to the distant
stars. So the stars make a little over 366 diurnal cycles in the time it takes the sun to
make a little over 365 diurnal cycles.

For daily timekeeping, we of course want our clocks to keep time at least approximately
with the sun. If we ran our clocks too fast, the sun would appear to rise later and later
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each day, and pretty soon we’d be getting up in darkness; if we ran them too slow, we’d
be getting up in the afternoon, and then the evening. So for the purposes of our civil
timekeeping 24 hour must be exactly the average length of a solar day, or to be more
precise the average time between meridian transits of the sun.

We can define this more precisely by considering a fictitious object called the mean
sun. This is a sun which moves eastward among the fixed stars at precisely the average

of the rate at which the real sun moves. The rate at which the real sun drifts eastward is
not quite constant because of a couple of reasons we will get to eventually, but the mean
sun’s rate is exactly constant. Using this concept we can precisely define

Local mean solar time = 12 hr + HA of mean sun.

Note that this is strictly local, since your meridian (which is needed to define hour angles)
is strictly local.

But we’ve just seen that the earth’s motion around the sun causes the sun to lag
behind the stars. Now, sidereal time is defined as the RA of whatever is on your meridian
– and the RAs of stars remain essentially fixed. Therefore, ordinary clock time – solar time
– lags behind sidereal time by one full 24-hour cycle per year. A clock reading sidereal
time must be constructed so that it runs slightly faster than an ordinary clock, so that it
gains the requisite one cycle per year. The ratio of the rates of sidereal and solar clocks is

sidereal rate

solar rate
= 1.0027379093.

If one converts this to a fraction of the form (x+1.)/x, one finds that x = 365.2422, which
is the number of days in a year. The sidereal clock gains on the solar clock by about 3 min
56 sec per day, which accumulates to about 1/2 hour per week and 2 hours per month.

[Here’s an aside about the calendar. The number of days in the year (365.2422) is not
an integer – there’s no physical reason for it to be an integer, since the rotation of the earth
is independent of its revolution about the sun. This non-commensurability causes us to
have an elaborate calendrical convention, by which the length of the year is approximated
as a fraction

length of calendar year = 365 +
1

4
−

1

100
+

1

400
.

This is implemented as follows: An ordinary year has 365 days, but years divisible by 4
are leap years of 366 days; years divisible by 100 are an exception, and are given 365 days;
but years divisible by 400 are yet another exception, and are given 366 days! So 1900 was
not a leap year despite being divisible by 4, and 2000 is a leap year anyway because it is
divisible by 400. With this fraction the average length of the calendar year is

length of calendar year = 365.2425 day,

which is very close to 365.2422 day, the true length of the year.]
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Back to solar and sidereal time. The diagram below presents an equivalent view as to
why a sidereal clock must be made to run faster than a solar clock. The diagram depends
on the fact that the distances to the stars are vastly greater than solar system distances, so
that the direction of a star is essentially constant even when viewed from different points
along the earth’s orbit. The daily motion is highly exaggerated in the diagram for clarity;
it is actually only a little less than one degree.

B

C
At time A, an observer standing at the base of the arrow sees

Sun

both the sun and the star on the meridian.

At time B, one (sidereal) day has passed; the star has returned to
the meridian, but the sun has not yet reached the meridian.

At time C, one (solar) day has passed; the sun has reached the
meridian.  

Sense of earth’s rotation and revolution is
Counter-Clockwise viewed from North 
(i.e., west to east).

To a star

To same star

Earth’s orbit

A

Thus far we’ve concentrated on the gradual easterly motion of the sun with respect
to the fixed stars, but ignored the north-south motion. Recall that the equatorial system
of coordinates is defined by the orientation of the earth’s rotation axis. The ecliptic, by
contrast, is defined by the orientation of the earth’s orbit about the sun. These are not
perfectly aligned; the earth’s spin axis is tilted by about 23.4 degrees away from a line

15



perpendicular to the ecliptic plane. This angle is called the obliquity of the ecliptic.

23.4 degr

Celestial Equator

NCP

SCP

Vernal

Ecliptic
Autumnal 
Equinox

Equinox

Summer
Solstice

Winter Solstice

Because of the obliquity, the declination of the ecliptic ranges from zero (where it
crosses the equator) to ±23.4 degrees. Remember that the sun follows the ecliptic in
its apparent annual journey around our sky. Therefore the declination of the sun varies
gradually through the year within the zone −23.4 ≤ δ ≤ +23.4.

When the sun is at its highest declination, we have the summer solstice; when it is
at its lowest declination, we have the winter solstice; when it crosses the equator heading
northward, we have the vernal equinox; when it crosses the equator heading southward,
we have the autumnal equinox. Their approximate dates are as follows:

Vernal Equinox March 20
Summer Solstice June 21
Autumnal Equinox Sept 22
Winter Solstice Dec 21

These are UT dates (later) for 1996; there is a slight variation from year to year because
the calendar doesn’t line up perfectly with the year except on average.

The high declination of the sun in summer accounts for the long days and the high
altitude of the sun above the horizon at noon. At the equinox, the sun is on the equator,
which is a great circle. Because the horizon is another great circle, the horizon splits the
daily path of the sun into two equal parts. Therefore the day and night are of equal length
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on the equinox – which is the origin of the name. At the winter solstice the low declination
of the sun explains the shortness of the day and the low maximum altitude of the sun. So,
the obliquity of the ecliptic is the cause of the seasons. This figure shows the apparent path
of the sun across the sky for a mid-northern latitude on the summer and winter solstices
– note that the horizontal plane in this diagram is the horizon, not the celestial equator.
Notice how the rising point is to the northeast on the summer solstice, and to the southeast
on the winter solstice; also notice that the length of the day will be proportional to the
fraction of the daily path which is above the horizon, which varies dramatically with the
season. Both the length of the day and the more directly vertical angle of sunlight during
the summer cause the total solar energy received – the insolation – to be much greater
during the summer than during the winter.

NCP

N S

E

Sun Path
 on W

inter
 Solsti

ceW

Celestia
l Equator

Sun Path on Summer S
olsti

ce

co-latitude

Horizonrise

set 

rise

set

We are finally in a position to explain the zero point of the right ascension system,
which until now we have left as arbitrary. The first point of Aries is at the Vernal Equinox
– the point at which the sun crosses the equator from south to north. Therefore on the
day of the vernal equinox, the sidereal time at noon is about zero hours, since the sun is
at the vernal equinox, which is the zero point of right ascension. At that point the solar
clock will be reading 12 hours, so we can see that at the vernal equinox the sidereal clock
has gained 1/2 of a 24-hour cycle compared to the solar clock. On the opposite side of the
year, the sidereal clock will read 0 hours at solar midnight – in other words, the sidereal
and solar clocks agree on the autumnal equinox, and then slowly drift away from each
other through the rest of the year, until they lap each other again one year later.

Astronomers who observe at night (some, such as solar and radio astronomers, do not
need to) are concerned with the sidereal time at night, because that defines which parts
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of the sky will be observable. A rough indication of this is the sidereal time at midnight –
objects with an RA equal to this will transit the meridian at midnight, and at that time
of year one has a maximum number of nighttime hours to observe them. One can easily
tell that the sidereal time at midnight will be as follows:

Vernal Equinox March 20 12 hours
Summer Solstice June 21 18 hours
Autumnal Equinox Sept 22 0 hours
Winter Solstice Dec 21 6 hours

It’s now worth stepping back and looking at the whole system from afar. The next
figure shows a perspective view of the earth’s orbit, with the earth shown at the solstices
and the equinoxes (obviously, the diagram is grossly out of scale!). Notice that in March,
when one looks toward the sun, one is looking in the direction of 0 hr right ascension. At
midnight one is looking diametrically away from this, toward 12 hours. It’s a good idea
to painstakingly correlate the table above with the diagram below! Notice also how the
earth’s axis maintains the same direction in space as it orbits the sun, as it must because
of conservation of angular momentum; this is the underlying reason why the declination of
the sun changes through the year. The little earth cartoons are tilted with respect to the
ecliptic plane, which reflects the reason why the ecliptic and equatorial planes are tilted.

Toward 0 h, 0 deg

Ecliptic Plane

Toward 6 hr,
+23.4 degr.

Toward 18 hr,
-23.4 degr

Sept.

December

March

June

N

View of Earth’s Orbit Toward 12 h, 0 deg
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Precession of the Equinoxes

The equatorial coordinate system is tied to the axis and equator of the earth. At a
gross level, the earth’s axis maintains a fixed direction in space throughout the year and
from year to year; as we’ve seen, that’s the reason we have seasons.

But at a more precise level the earth’s axis does not stay perfectly fixed, but rather
drifts slowly in orientation. The physical reason for this is that the earth experiences a
net torque from the gravitational pulls of the moon, sun, and planets. This torque arises
because the earth is not quite spherical; its rotation causes it to bulge slightly toward the
equator, so the earth’s equatorial diameter is about 1/298 larger than its polar diameter.
The equatorial bulge gives a ‘handle’ for the gravitational torques exerted by the sun and
the moon.

These torques ‘try’ to twist the earth’s equator back into the plane of the ecliptic.
But if you’ve studied rotational dynamics you know that this does not lead directly to
the alignment of the equator with the ecliptic, but rather to a precession. The earth’s
pole, rather than moving toward perpendicularity with the ecliptic, moves in a direction
perpendicular to both the ecliptic pole and the earth’s pole. One can see this kind of
motion if you support a rapidly spinning gyroscope on a stand – rather than toppling over,
it moves perpendicular to the direction in which gravity is trying to pull it, and its axis
slowly describes a conical figure.

Plane Equatorial bulge 
(exaggerated)

To ecliptic pole

23.4 degr.

Earth’s axis
12000 years 

   from now Earth’s axis now

Ecliptic

In the case of the earth, the coordinate motion which results from the torques of the
other solar system bodies is called precession of the equinoxes. The name arises as follows.
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can see that as the pole is dragged along, it carries the equator with it – the equator is
always exactly 90 degrees to the pole. And this causes the intersection point of the equator
and the ecliptic to be dragged along, so the equinoxes move gradually along the ecliptic
due to precession.

Distant objects are in a fixed direction in space – the more distant the objects, the
more slowly they appear to us to move. To see why this is so, imagine setting up polar
coordinates (r, θ) with ourselves at the origin. Orient the plane containing the coordinates
so that it contains the object, ourselves, and the object’s velocity vector, as in the diagram
below. The object will have some velocity parallel to the line of sight (v‖) and another
perpendicular to the line of sight (v⊥). We have

v⊥ = r
dθ

dt
,

so if r is large, dθ/dt becomes very small. So distant objects maintain fixed directions in
space.

θ

r

v
v

v

arbitrary fixed direction 

⊥
Diagram showing how the rate of 
change of position of a star is 
related to its distance and transverse
velocity

dθ

observer

__⊥
r

=
v

dt
__

Even so, their equatorial coordinates change gradually with time, because of precession
of the equinoxes. Therefore, whenever one quotes equatorial coordinates for an object, one

must also quote the date of the coordinate system to which they refer. This is sometimes
loosely referred to as the epoch of the coordinates, though it’s a little more correct to call
it the equinox of the coordinates – most formally one sees ‘referred to the mean equator
and equinox of 1950’, but one usually sees ‘epoch 1950’.

Because the precession of the earth’s axis is smooth, predictable, and well-understood,
it’s possible to convert coordinates from one epoch to another. To do this in a completely
general fashion requires the use of the mathematics of rotation in three dimensions, which
in turn requires the use of a matrix. But for approximate calculations, one can use a
linear approximation – this simply takes the rate of change of the coordinates at some
instant, and approximates the amount of change over a finite interval by multiplying the
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instantaneous rate of time by the interval. For precession, one has to a good approximation

dα

dt
= (3s.075 + 1s.336 sinα tan δ) yr−1,

and
dδ

dt
= 20′′.043 cosα yr−1.

Notice the units – for RA the expression gives the number of seconds of time per year, and
for dec the number of seconds of arc per year.

For example, suppose one was given coordinates

α = 13h 14m 15s.38, δ = −45◦ 45′ 45′′.3, equinox 1950,

and asked to give coordinates for the same objects referred to the equinox 2000. One
finds on converting that α = 13.237606 hours, which is equivalent to 198.564083 degrees;
converting δ to decimal degrees yields δ = −45.762583. So we have

sinα = −0.3184,

cosα = −0.9480,

and
tan δ = −1.02698.

Putting these into the expressions yields

dα

dt
= (3s.075 + 0s.437) yr−1

and
dδ

dt
= −19′′.000 yr−1

In 50 years this amounts to

∆α =

(

dα

dt

)

∆t = 175s.59,

and

∆δ =

(

dδ

dt

)

∆t = −950′′.

Applying these to the original coordinates yields coordinates for the equinox of 2000

13h 14m 15s.38 + 175s.59 = 13h 17m 10s.98

and
−45◦ 45′ 45′′.3 − 950′′.0 = −46◦ 01′ 35′′.3
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A more accurate calculation using a full rotation-matrix formulation of the problem gives

α = 13h 17m 11s.47, δ = −46◦ 01′ 33′′.3, equinox 2000,

which shows that the approximations used are good but not perfect. Because of the tan δ
in the expression for dα/dt, the errors clearly become largest near the poles; the errors
also become larger the greater the time interval.

The computers attached to professional-class telescopes usually do precession calcu-
lations automatically, but one still must be careful. A large telescope typically has a very
small field of view, often only a few arcminutes across. If one tells the telescope that one
is aiming at coordinates for 2000, but feeds it 1950 coordinates by mistake, you can see
that the error is substantial. In the example above, the error in RA would be 176 seconds
of time, which is 176 × 15 = 2640 arcseconds; taking account of the fact that the lines of
constant RA crowd together as one goes away from the equator, this is an angular distance
along the small circle of 2640 cos δ = 1841 arcsec. The miss distance in declination is 950
arcsec. RA and dec are perpendicular, and even though one is actually on the surface of
a sphere, you can treat it locally as if it were flat (just as a surveyor treats a small piece
of the spherical earth as a flat surface). So to find the total distance by which you’ll miss
the object, you add 1841 and 950 arcsec using the Pythagorean theorem,

total miss distance =
√

18412 + 9502 = 2072′′,

which is 2072/60 = 34.5 arcmin. So, if you use the wrong epoch, you generally can’t find
the object you’re looking for at all!

More About Timekeeping

So far, we’ve mentioned mean solar time and sidereal time. Solar time is a strictly local
quantity, because your meridian is different wherever you go on earth. This clearly won’t
do for keeping civilization organized, as early railroad companies discovered. Accordingly,
the earth is divided into time zones, within which people agree to keep clocks set to the
same value, which approximates the solar time. The time kept in a time zone is referred
to as zone time; Eastern time is an example. In most regions of the world, zone times are
offset from each other by an integer number of hours, but in some third-world countries
smaller subdivisions are used. Time zones span on average 15 degrees of longitude, because
one hour is equivalent to 15 degrees.

At any given moment, there is a time-zone boundary which is also the date boundary;
on the west side of the line, the time might be 11:30 PM (23:30), and on the east side it
is 12:30 AM (0:30) the next morning. When the hour switches, the date boundary moves
one zone to the west. It keeps going around the earth over and over. Suppose this date
boundary is the date between the first of the month and the second. Then it will remain
the boundary between the first and the second, unless someone decides to re-set the date
arbitrarily. Since we do want the date to advance from day to day, we use an International
Date Line, near longitude 180 degrees, as an arbitrary point at which the new date begins.
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When the date boundary reaches this point, the date is arbitrarily advanced by one; the
new date then sweeps around the earth until the date line is reached again. Late in the day
in California, you can call a person in Japan early the next morning, their time! Clearly,
both date and time are dependent on your position on earth.

This is all hopelessly confusing and parochial, so astronomers and others who require
unambiguous timing (e.g., the military) use Universal Time (UT), which the military calls
‘Zulu time’. Although we’ll see later that the exact definition of UT is fraught with minor
technicalities, the short story is that UT is simply time for the time zone of Greenwich.
Eastern standard time is UT minus 5 hours, Central is UT minus 6 hours, Mountain is
UT minus 7 hours, and Pacific is UT minus 8 hours. So when it is midnight UT, it is 5
PM Mountain.

Note carefully that UT also involves the date. When it is 7 PM Mountain time, on
the 12th, it is 2 AM UT, on the 13th.

UT times are just about always recorded using the 24-hour clock, rather than AM
and PM. So 17 hr UT is ‘5 PM’ UT.

For civil timekeeping most locations in the US use Daylight Savings Time for part of
the year. For this one simply advances the clock one hour in the spring (‘spring forward’)
and brings it back to standard time in the autumn (‘fall back’). When DST is in effect, the
offsets to UT are 4 hr Eastern, 5 hr Central, 6 hr Mountain, and 7 hr Pacific – advancing
the clock one hour places it one less hour behind Greenwich than it had been. The reason
is that sunrise occurs very early in the summer months, before most people are up; by
fiddling the clocks, one gets an extra hour of light in the afternoon, while still having light
in the morning.

While UT rationalizes time recording considerably, it doesn’t do anything about the
calendar. Astronomers often want to find an accurate time interval between widely sepa-
rated events. This is very difficult using the present calendrical system (quick! how many
days old are you?). To make these calculations easier, you would like to have a time system
which just consisted of a real number attached to each time, so you could just subtract
two real numbers to get a time interval. There is such a system, called the Julian Day
system. This is just a system of sequential day numbers, with the time of day expressed
as the fractional part of the number. Julian day zero is around 4700 BC (they weren’t
invented then, it was just set up this way later). Therefore any historical record will have
a positive Julian day number. The system was originally developed to record astronomical
observations during the nighttime in Europe, so an unfortunate choice was made to have
the Julian day change at noon UT; that way, all nighttime observations made in Europe
would be on the same Julian date. With astronomy done world-wide, it’s a major pain
to have to get the extra 1/2 step correct. Julian day number 2 450 000 (two million, four
hundred fifty thousand) was the same as UT date and time October 9, 1995, at 12 hours.
Computer routines for converting standard calendar dates back and forth to Julian dates
are available fairly readily.

More exact timekeeping depends on very careful definitions of time. Technically speak-
ing, UT is based on earth rotation. Because all the civil clocks in the world are tied to
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UT, you want the UT to keep pace with the mean sun, which in turn is based on the
earth’s rotation. But, as it turns out, the earth’s rotation rate is not perfectly constant,
but rather the length of the day gradually changes, by amounts measured in milliseconds
per year. The general trend is for the earth to gradually slow down. A few milliseconds
per year doesn’t sound like much, but when you predict the angle to which the earth will
be rotated in the future, the differences accumulate; a 5 millisecond change in the length
of the day, persisting for a year, will accumulate to 0.005 sec × 365 days = 1.8 seconds;
and persisting for 40 years it will accumulate to 73 seconds, which is extremely obvious!

For this reason, it’s necessary to define another timescale which is as uniform as we
can make it. In the past, the only way to tell the earth was slowing down was to use
the rest of the solar system as a ‘clock’. The motion of the moon in particular, which is
quite rapid, served as an independent time scale, and was used to define Ephemeris Time
(ET), which used to be the most uniform timescale available. Then came atomic clocks,
which are astonishingly accurate (with a stability approaching 1 part in 1014!). This led
to the definition of International Atomic Time (known by its French initials, TAI). TAI is
independent of all astronomical observations. A new formulation of ET, called Terrestrial
Dynamical Time, or TDT, is based on TAI and has superseded the old ET. For some reason
the TAI scale is offset by a constant 32.184 seconds, in the sense that TDT−TAI = 32.184
sec.

Meanwhile, we still want a UT available for civil timekeeping. True UT – essentially
the instantaneous phase of the rotation of the earth – is impossible to predict with perfect
accuracy, because the fluctuations in the earth’s rotation are not perfectly predictable.
And if we did use true UT for timekeeping, the second would have to stretch and shrink
according to the earth’s rotation. So the international community uses instead a system
called Coordinated Universal Time, or UTC, which is close to true UT, but differs from
the very uniform TAI by an integer number of seconds. Because true UT does drift, an
extra second is inserted from time to time to keep UTC within 0.9 seconds of true UT.
These seconds, called leap seconds, are inserted in the last minute of December 31 or the
last minute of June 30, as needed. So the last minute of December 31 or June 30 may have
61 seconds!

Returning now to the motions of bodies in the sky, you will recall that I made a
distinction earlier between the mean sun (a fictitious body which moves at the sun’s average
east-west rate) and the real sun. The RA of the real sun does not move eastward at a
constant rate. There are two reasons for this. First of all, the earth’s orbit is not circular,
so the motion of the sun along the ecliptic does not proceed at a uniform rate. Second,
the ecliptic is inclined to the equator, so even if the sun were moving at a uniform rate, its
right ascension would not increase at a constant rate. One can see this effect by imagining
that the obliquity of the ecliptic were nearly 90 degrees. In that case the sun would be
near 0 hours RA for half the year, then very rapidly switch to 12 hours RA! With a 23.4
degree obliquity, the effect is much less pronounced, but it’s still there.

When the real sun is west of the mean sun (at a lower RA), it crosses the meridian
earlier than the mean sun, and we say the sun is fast. When the real sun is east of the
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mean sun (higher RA), it crosses the meridian late, and we say it is slow. These effects can
amount to nearly 1/2 hour. They are independent of your position on earth, and repeat
consistently from year to year. The curve giving the amount by which the sun is fast or
slow through the year is called the equation of time.

As we saw earlier, the sun’s declination also varies systematically through the year,
giving rise to the seasons. There is a lovely graph which plots the sun’s declination on the
vertical axis and the equation of time on the horizontal axis – this describes the path of
the sun in the sky, after the earth’s rotation has been taken out. The graph is called the
analemma, and it is shown here.

Dennis DiCicco, a brilliant astrophotographer who is on the staff of the amateur astronomy
magazine Sky and Telescope, once constructed a picture of the analemma by setting up
a camera to snap a picture of the sun every morning at exactly the same time of day at
2-week intervals; the multiple exposure showed a huge figure-8 in the sky, just like the
diagram. The analemma is sometimes plotted on a globe somewhere in the Pacific.

The asymmetry of the analemma can be used to explain a curious fact – though the
longest night is on the solstice, the earliest sunset is a little before the solstice, around the
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7th of December at mid-northern latitudes. Imagine repeating DiCicco’s photograph with
the camera pointing west, and set the time of day for your exposures to the moment of
earliest sunset in December. The analemma will appear in the photograph tilted north-
ward on the western horizon, and its lowest point will be tangent to the horizon. The
unexpectedly early sunset is seen to be a consequence of the ‘sun fast’ condition before the
solstice is reached.

Some Mathematical Techniques

So far, we’ve mostly laid the conceptual groundwork for an understanding of this
material. Now I would like to outline some of the mathematical techniques used for actually
computing things. This is a large subject, which I will not cover completely, but it should
be enough to let you do some practical problems.

It is often useful to transform spherical-polar coordinates to Cartesian unit vectors.
These are simply vectors which have length 1, expressed as triplets of numbers; the first
number is the x-coordinate, the second the y-coordinate, and the third is the z-coordinate.
Refer to the diagram to verify that for right ascension α and declination δ,

z = sin δ,

x = cos δ cosα,

and y = cos δ sinα.

By squaring these and summing these, you can see that these are components of a vector
of length 1.
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sinα cos(T
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δ
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Transformation from RA and dec to (x,y,z) Coordinates
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s α
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s δ

(To NCP)

(To 6 hr, 0 deg)

Notice that the x axis points towards α = 0, δ = 0, the y axis toward α = 6 hr, δ = 0,
and the z axis toward δ = 90 degrees. This is the standard configuration for Cartesian
coordinates applied to celestial directions.

There are several things one can do with coordinates in this form. Suppose, for
instance, that one has unit vectors a and b. Then

a · b = ab cos θ,
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where a and b are the magnitudes, which are both one, and θ is the angle between the two
vectors. Because these are unit vectors, a and b go out, leaving

θ = cos−1(a · b),

where cos−1 denotes the arc cosine function. So this is an easy way of finding the angle
between any two directions.

Another useful feature of the vector form is the ease with which one can rotate co-
ordinates. This is especially useful for precession, but the same method applies to other
rotational transformations as well. I’ll review this here. Suppose one has coordinates x
and y in two dimensions, and you wish to rotate the axes counter-clockwise through angle
θ, to make new axes x′ and y′. Then the coordinates of the same point referred to the
rotated axes are

(

x′

y′

)

=

(

cos θ sin θ
− sin θ cos θ

) (

x
y

)

.

The 2× 2 matrix is called a rotation matrix. Notice that it reduces to the identity matrix
when θ = 0, and has a determinant of one.

Rotation of Coordinate Axes

y

x

y x

θ

P

You can extend this to three dimensions simply by rotating around each axis in turn.
This gives you the freedom to do a completely general rotation. To extend the formalism
above to rotations around any of the three axes, you stretch the matrix out to 3 × 3, and
pad with ones and zeros as appropriate:

rotation around x axis :





1 0 0
0 cos θ sin θ
0 − sin θ cos θ





rotation around y axis :





cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ




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rotation around z axis :





cosψ sinψ 0
− sinψ cosψ 0

0 0 1





To get the fully general rotation, you multiply these all together. Since matrix mul-
tiplication is not commutative, the ordering of these matrices it does matter. When you
write out the matrices for multiplication, the first rotation to be applied is the rightmost,
the second is the middle, and the last is the leftmost. Matrix multiplication is associative,
so it doesn’t matter how you group the multiplication once you’ve written them down.

An entirely different, and much older, approach to practical astronomy problems is
the use of the spherical triangle. This is a triangle, all of whose arcs are sections of great

circles (not small circles!). It’s customary to label the angles of the three vertices as A, B,
and C, and the arcs opposite these three vertices as a, b, and c. The sphere is understood
to be a unit sphere, so the arcs can serve as angles – it makes sense to speak of sin a, even
though a is an arc.

A

a, b, and c are all sections of great circles.  

B

C

c

a

b

A spherical Triangle 

It’s interesting to note that on a sphere, the sum of the angles A+ B + C > 180 degrees;
it only approaches 180 degrees as the triangle becomes small compared to the sphere’s
radius.

Spherical triangles have their own trigonometry. Two results are especially useful,
namely the spherical law of sines,

sin a

sinA
=

sin b

sinB
=

sin c

sinC
,
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and the spherical law of cosines, which takes two forms

cos a = cos b cos c+ sin b sin c cosA

and
cosA = − cosB cosC + sinB sinC cos a.

With the first of these, we can prove a little lemma which will be useful, namely that
if two sides b and c of a spherical triangle are 90 degrees long, the angle between them A
is equal to the arc a. This is pretty obvious intuitively – imagine a triangle formed by the
north pole and two points on the equator. Then the length of the arc along the equator
is just equal to the angle subtended at the north pole, which will just be the difference in
the longitude of the two points.

While spherical trigonometry is very useful in problems involving the celestial sphere,
it is perhaps most commonly applied to the following triangle, which is sometimes called
the astronomical triangle. This is a triangle on the celestial sphere whose vertices are the
object you’re observing, the north celestial pole, and the zenith. The arc between the
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meridian

celestial equator

horizon

E

W

N S

The Astronomical Triangle

HA

co-latitude

co-dec

zenith and the north celestial pole will equal your co-latitude, and the arc between the NCP
and your object will be the object’s co-declination, or 90 degrees minus its dec. A little
less obvious is the fact that the angle of the vertex at the NCP is the object’s hour angle
(which follows from our little lemma applied to the triangle whose vertices are the NCP,
the meridian at the equator, and the hour angle of the object at the equator). Putting this
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together we have ‘side-angle-side’, which completely specifies the triangle. One can now
use the laws of spherical trigonometry to find the object’s zenith distance, which is the
angular distance from the zenith, and the object’s azimuth. The azimuth is the ‘left-right’
position of the object; it’s a longitude-like coordinate in the spherical polar system with a
‘pole’ at your zenith and an ‘equator’ coincident with your horizon. The object’s altitude,
which we introduced earlier, will be 90 degrees minus its zenith distance.

There’s even more we can get! Once we’ve found the zenith distance and the azimuth,
we have all the elements of the triangle except for the angle at the vertex near the object.
This angle is a useful quantity; to see what it’s used for, we introduce the idea of position
angle. Imagine looking at an object in the sky and taking its picture. The picture you’re
looking at will have a well-defined northerly direction, which is the direction of an arc
toward the NCP. This will not in general be coincident with up and down, or with left
and right. For example, if you look toward the eastern horizon, north will be upward and
toward the left. Now that the northerly direction in a picture is defined, imagine trying to
describe how one object lies with respect to another – for example, the direction between
the fainter component of a double star and the brighter one. You describe this using the
position angle, which is the angle the arc from one star to the other makes to the north.
This is pictured here. It is puzzling at first to note that if north is to the top, east is to
the left in an astronomical picture; that’s because we’re inside the celestial sphere, looking
out. By contrast, a conventional map of terrain on earth is from the outside looking down
(a bird’s-eye view), which has the opposite parity (or handedness).

East 

B

Angle

A

(East is to the left in celestial maps)

Measured "North through East"

North

Position Angle of star B around star A 

Position

The last angle in the astronomical triangle is the position angle of the arc toward
the zenith – the position angle of ‘straight up’. This is called the parallactic angle, be-
cause topocentric parallax (covered later) works along this angle. It’s important to optical
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observations because the refraction in the earth’s atmosphere tends to make objects ap-
pear a little higher in the sky than they really are, so this effect moves objects along the
parallactic angle.

So you can see that spherical triangles will be useful, especially when one needs to
know the angle with which two great-circle arcs intercept. For that problem, the vector
formulations are not useful.

The Moon

The moon orbits the earth at a mean distance of about 60.3 earth radii. Its average
angular diameter is about 31 arcmin, corresponding to a physical radius of 1738 km, about
1/4 that of the earth.

The moon’s orbit is approximately elliptical, as one would expect from the solution of
the gravitational two-body problem. The eccentricity of the moon’s orbit is about 0.055.
It takes on average 27.32 days for the sun to return to the same RA in the sky – this is
called the sidereal month. However, during this time the sun has moved about 2 hr in RA,
so it takes a couple of days for the moon to come back to the same phase with respect
to the sun. As I would hope anyone would know, the moon’s obvious phases are due to
our changing view of the moon’s illuminated face, so the time required for the moon to go
through its phases is controlled by how long it takes to come back to the same phase with
respect to the sun. This is the synodic month, which is 29.53 days. Note that

1

1 sidereal month
−

1

1 synodic month
=

1

1 year
,

so the difference between the synodic and sidereal months is precisely analogous to the
difference between the solar and sidereal days.

To explore the phases of the moon more fully it’s useful to define ecliptic coordinates,
in particular ecliptic longitude and ecliptic latitude. These are spherical-polar coordinates
just like RA and dec, or geographical latitude and longitude. Ecliptic latitude is measured
away from the ecliptic, and ecliptic longitude is measured along the ecliptic eastward from
the first point of Aries. So ecliptic coordinates are broadly similar to RA and dec, but
with the pole tilted by 23.4 degrees away from the earth’s pole.

When the moon’s ecliptic longitude is the same as the sun’s we say the moon is
new. It is then invisible, unless it is silhouetted against the sun in an eclipse. Because
the moon’s orbit is inclined somewhat to the ecliptic, this does not always happen (more
later). About a week later, the moon lies at an ecliptic longitude 90 degrees away from
that of the sun (for some reason, hours are not generally used for ecliptic longitude as they
are for RA), and we say the moon is at first quarter. It’s called quarter because 1/4 of
the cycle has passed; it actually appears as a half moon. The first quarter moon stands
near the meridian at sunset, and sets sometime around midnight. About a week later,
the moon’s longitude is exactly 180 degrees from the sun, and the moon is full. It now
rises at sunset, transits at midnight, and sets at sunrise. The full moon is very bright,
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so the whole night is illuminated. About a week later, when the moon is 270 degrees of
ecliptic longitude from the sun, we have last quarter; the last quarter moon rises around
midnight, transits around sunrise, and sets around noon. Then a week later we have new
moon again, and the cycle begins again. Each of these phase cycles is called a lunation.
The diagram shows (schematically) the phases of the moon, as viewed from high above
the north pole; notice that the sense of the moon’s revolution is the same as that of the
rotation of the earth. If you are unfamiliar with this it is a good exercise to carefully verify
the statements regarding where the moon can be found in the sky at various times of day.

Sense of Earth’s Rotation

sunlight 

Earth

First Quarter

Last Quarter

Full Moon New Moon

The moon’s orbit is inclined to the ecliptic by about 5.1 degrees. Therefore, it moves
more-or-less along the plane of the ecliptic. Therefore, the declination of the full moon is
about opposite to that of the sun. In winter, the full moon is high in the sky; in summer,
it is low on the horizon. Notice that this applies only to the full moon.

The moon crosses the ecliptic twice per month. If this happens to correspond to the
time the sun is at the same longitude, we have an eclipse – that’s where the term ‘ecliptic’
comes from! If the moon moves across the sun at new moon, one has a solar eclipse, in
which the moon casts a shadow on the earth; if the moon moves across the ecliptic at full
moon, the earth will cast a shadow on the moon, and we have a lunar eclipse. We’ll discuss
these a little more thoroughly in a moment.

The moon’s orbit is strongly affected by the sun – in fact, the sun’s gravity exerts
a stronger pull on the moon than does the earth’s gravity, so the moon’s path is always
concave toward the sun, even when the earth is pulling it the other way. But because the
earth and the moon orbit the sun together, we see the moon as going around us. Still, the
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gravity of the sun (and to some extent of the planets) causes very large perturbations on
the moon’s orbit. There are two major ones:

• The line of nodes where the plane of the moon’s orbit crosses the ecliptic precesses
toward smaller longitudes with a period of 18.61 years; and

• the longitude of the moon’s perigee (the closest point in its orbit to earth) rotates
toward higher longitudes with a period of 8.85 years.

An accurate accounting of the moon’s orbit requires hundreds of perturbation terms;
the most accurate lunar ephemerides (a term for predictions of the positions of celes-
tial bodies, pronounced ‘eff-emm-air-id-ees’) now come from computer integrations of the
equations of motion.

It’s worth noting again (as we did on the first page) that the moon is so close to
the earth that its apparent position is strongly affected by your position on earth. This
effect is called parallax, which is a general term for changes in apparent position due to
changes in viewing point; parallax is greatest for nearby objects. Parallax effects due to
viewing positions on earth are called topocentric parallax, because positions referred to an
observer’s geographical position are called topocentric. By contrast, positions referred to
a hypothetical observer at the center of the earth (who is somehow able to see out) are
called geocentric positions. The correction from geocentric to topocentric position for the
moon amounts to almost one degree when the moon is on the horizon; it’s zero when the
moon is in the zenith.

Other Coordinate Systems

Here I’d like to collect together a few of the other coordinate systems used in astron-
omy. I’ve alluded to most of them already, but I should lay them out more systematically.
The equatorial system has been covered exhaustively earlier. All of these are coordinate
systems on the celestial sphere – they describe direction only.

Ecliptic Latitude and Longitude. These have been covered earlier. Briefly, the pole is
the direction perpendicular to the ecliptic, and the zero point of longitude is the first point
of Aries. Ecliptic latitude and longitude are generally given in degrees.

Altitude and Azimuth. These are sometimes called topocentric coordinates – they
are strictly local to an observer on earth. Altitude is the angle between the point in
question and the observer’s horizon, measured along a great circle which also passes through
the zenith. Zenith distance is the complement of altitude. Azimuth is a longitude-like
coordinate measured along the horizon, starting at due north and proceeding through
east to the point at which a great circle through the zenith and the object intercepts the
horizon. Thus an object due east has an azimuth of 90 degrees, due south has 180 degrees,
and due west has 270 degrees.

Galactic coordinates are referred to a pole which is perpendicular to the plane of
the Milky Way. Galactic latitude is called b and Galactic longitude is called l. The
zero of galactic longitude is roughly coincident with the direction toward the center of
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the Galaxy, and increases roughly eastward. Galactic longitudes are defined from 0 to
360 degrees, rather than in ±180 degrees, which is kinda dumb. The plane of the solar
system has nothing to do with the plane of the Galaxy – they’re randomly oriented with
respect to each other – so rotating from one to the other calls for a full 3-d coordinate
transformation. Recall that all these coordinates are on the celestial sphere, so it doesn’t
matter where the center of galactic coordinates is taken to be – the galactic coordinates
refer only to directions in space. The center and pole of the galaxy (referred to equinox
1950) are approximately

center: α = 17h 42m.4, δ = −28◦ 55′,

pole: α = 12h 49m.0, δ = +27◦ 40′,

An older system used before the early 1960s had a different zero of longitude, but that’s
all long gone now.

Some Finer Details

There are several small effects on a star’s position which I’ve ignored so far. They’re
important for precise work, and you’ll see them mentioned in other sources.

• Nutation is a small variation of RA and dec – less than 1 arcmin – caused by slight
wobbles of the direction of the earth’s axis. These are rather complicated – to compute
them one generally uses an extensive series of terms. Nutation is superposed on
the smooth variation of precession. One often sees coordinates referred to the mean
equinox, which means that the effects of nutation have been ignored in the calculation.
One also sees a distinction between local mean sidereal time and local apparent sidereal
time, which arises as follows. The sidereal time is the hour angle of the first point
of Aries, or the vernal equinox. Because the vernal equinox is the point where the
equator crosses the ecliptic, a wobble in the direction of the pole causes the vernal
equinox to wobble slightly, too. Local apparent sidereal time is the hour angle of the
true equinox; local mean sidereal time is the hour angle of the mean equinox, for which
nutation is ignored. So local mean sidereal time is a somewhat more regular timescale
than local apparent sidereal time. Nearly all coordinates quoted in the literature are
referred to the mean equinox.

• Aberration is a slight change of apparent position caused by the earth’s motion and
the finite speed of light. The earth moves about 30 km/s in its orbit, which is 10−4 of
the speed of light; accordingly, a star which lies perpendicular to the direction of the
earth’s motion will have its position shifted by about 10−4 of a radian, which amounts
to some 20 seconds of arc. The effect is to make the star appear slightly closer to the
direction toward which the earth is moving.

• Refraction is the displacement of a star’s image by the earth’s atmosphere. For a star
60 degrees from the zenith, this amounts to about 1.6 arcmin at sea level. The effect is
to raise the star’s image above where it would have been without an atmosphere. It’s
good to remember that refraction is not independent of wavelength – the blue image
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of a star is refracted somewhat more than the red image, so stars near the horizon
look like little rainbows under magnification.

• Proper motion is a change in the apparent position of a star due to its actual physical
motion across the line of sight. The largest proper motion (Barnard’s star) is about
10 arcsec per year. Proper motion is only large for very nearby stars, though it
does accumulate to a noticeable displacement over time even for more distant stars.
Extragalactic objects generally have proper motions indistinguishable from zero.

• Annual Parallax is the shift in the apparent position of a nearby star due to the motion
of a the earth in its orbit, which causes the viewing point to shift. The nearest star has
an annual parallax of only about 0.7 arcsec, and more distant stars all have parallaxes
smaller than this. Parallax for stars is usually so small that it’s hard to detect and
measure accurately. It never causes large displacements in the positions of stars.

The RA and dec of a star including nutation, aberration, proper motion, and annual
parallax – is often called the apparent place of a star. If one really needs to point a
telescope exactly at a star – as with a large professional telescope – one needs to compute
the apparent place first, and then account for refraction and any known errors in the
telescope mounting.

There’s also a minor distinction in the definition of epochs, which are just moments
in time to which astronomical positions are referred (for precession, etc.). The standard
practice nowadays is to refer to Julian epochs, which are measured in years of 365.25
days from the standard epoch denoted J2000, which is Julian day 2451545. exactly. This
corresponds to 12 hours UT on 2000 Jan 1. An older practice was to use Besselian epochs,
in which the length of the year is taken to be 365.2422 days and the fundamental epoch is
B1950, which is JD 2433282.423, corresponding to 1949 December 31 at 22:09:07 UT.

Some Topics Left Out . . .

I’m not going to treat the motion of the planets in any detail here, save to say that
they orbit the sun approximately in the plane of the ecliptic. There are some very obvious
inferences about the planets, such as the fact that the inferior planets (Venus and Mercury)
never reach large angular distances from the sun; they are never visible at midnight from
temperate latitudes. Planetary motions are well described in other books.

Further Reading

The ‘Bible’ for calculations of this kind is the Astronomical Almanac. This book is
published annually by the U.S. Government Printing Office and Her Majesty’s Stationery
Office. It has definitive tables of planetary positions, and formulae for transforming coor-
dinates and timescales. It’s available in any good scientific library.

Unsöld and Baschek’s wonderful little book New Cosmos (Springer Verlag, 1991) con-
tains a short section which summarizes much of the information given here. It’s consider-
ably less verbose than my treatment, which will appeal to many readers.
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L. G. Taff’s Computational Spherical Astronomy (Wiley, 1981) is another useful ref-
erence.

Finally, the Belgian amateur Jean Meeus has written at least two very useful cook-
books for calculations of this kind, the more useful of which is Astronomical Formulae for

Calculators (Willman-Bell). This contains a rather accurate lunar theory, among other
things.

The popular magazine Sky and Telescope has discussions of issues of this kind from
time to time, and is a rich source for advertisements of relevant personal computer software.
I’ve been very pleased with the inexpensive Guide package for IBM PC clones, available
from Project Pluto in Bowdoinham, Maine.

Finally, users with access to workstations and Internet access might want to explore
my own software, skycal, which is available for free via anonymous ftp from iraf.noao.edu,
in the contrib directory. This package contains a large number of c-language routines to
do this kind of calculation, and a manual is included as well.

Please send comments to john.thorstensen@dartmouth.edu .
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