48#define inline __inline
51#define LINMATH_H_DEFINE_VEC(n) \
52 typedef float vec##n[n]; \
53 static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) { \
55 for (i = 0; i < n; ++i) r[i] = a[i] + b[i]; \
57 static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) { \
59 for (i = 0; i < n; ++i) r[i] = a[i] - b[i]; \
61 static inline void vec##n##_scale(vec##n r, vec##n const v, float const s) { \
63 for (i = 0; i < n; ++i) r[i] = v[i] * s; \
65 static inline float vec##n##_mul_inner(vec##n const a, vec##n const b) { \
68 for (i = 0; i < n; ++i) p += b[i] * a[i]; \
71 static inline float vec##n##_len(vec##n const v) { \
72 return (float)sqrt(vec##n##_mul_inner(v, v)); \
74 static inline void vec##n##_norm(vec##n r, vec##n const v) { \
75 float k = 1.f / vec##n##_len(v); \
76 vec##n##_scale(r, v, k); \
79LINMATH_H_DEFINE_VEC(2)
80LINMATH_H_DEFINE_VEC(3)
81LINMATH_H_DEFINE_VEC(4)
83static inline
void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) {
84 r[0] = a[1] * b[2] - a[2] * b[1];
85 r[1] = a[2] * b[0] - a[0] * b[2];
86 r[2] = a[0] * b[1] - a[1] * b[0];
89static inline void vec3_reflect(vec3 r, vec3
const v, vec3
const n) {
90 float p = 2.f * vec3_mul_inner(v, n);
92 for (i = 0; i < 3; ++i) r[i] = v[i] - p * n[i];
95static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) {
96 r[0] = a[1] * b[2] - a[2] * b[1];
97 r[1] = a[2] * b[0] - a[0] * b[2];
98 r[2] = a[0] * b[1] - a[1] * b[0];
102static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) {
103 float p = 2.f * vec4_mul_inner(v, n);
105 for (i = 0; i < 4; ++i) r[i] = v[i] - p * n[i];
108typedef vec4 mat4x4[4];
109static inline void mat4x4_identity(mat4x4 M) {
111 for (i = 0; i < 4; ++i)
112 for (j = 0; j < 4; ++j) M[i][j] = i == j ? 1.f : 0.f;
114static inline void mat4x4_dup(mat4x4 M, mat4x4 N) {
116 for (i = 0; i < 4; ++i)
117 for (j = 0; j < 4; ++j) M[i][j] = N[i][j];
119static inline void mat4x4_row(vec4 r, mat4x4 M,
int i) {
121 for (k = 0; k < 4; ++k) r[k] = M[k][i];
123static inline void mat4x4_col(vec4 r, mat4x4 M,
int i) {
125 for (k = 0; k < 4; ++k) r[k] = M[i][k];
127static inline void mat4x4_transpose(mat4x4 M, mat4x4 N) {
129 for (j = 0; j < 4; ++j)
130 for (i = 0; i < 4; ++i) M[i][j] = N[j][i];
132static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b) {
134 for (i = 0; i < 4; ++i) vec4_add(M[i], a[i], b[i]);
136static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b) {
138 for (i = 0; i < 4; ++i) vec4_sub(M[i], a[i], b[i]);
140static inline void mat4x4_scale(mat4x4 M, mat4x4 a,
float k) {
142 for (i = 0; i < 4; ++i) vec4_scale(M[i], a[i], k);
144static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a,
float x,
float y,
147 vec4_scale(M[0], a[0], x);
148 vec4_scale(M[1], a[1], y);
149 vec4_scale(M[2], a[2], z);
150 for (i = 0; i < 4; ++i) {
154static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) {
157 for (c = 0; c < 4; ++c)
158 for (r = 0; r < 4; ++r) {
160 for (k = 0; k < 4; ++k) temp[c][r] += a[k][r] * b[c][k];
164static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) {
166 for (j = 0; j < 4; ++j) {
168 for (i = 0; i < 4; ++i) r[j] += M[i][j] * v[i];
171static inline void mat4x4_translate(mat4x4 T,
float x,
float y,
float z) {
177static inline void mat4x4_translate_in_place(mat4x4 M,
float x,
float y,
179 vec4 t = {x, y, z, 0};
182 for (i = 0; i < 4; ++i) {
184 M[3][i] += vec4_mul_inner(r, t);
187static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b) {
189 for (i = 0; i < 4; ++i)
190 for (j = 0; j < 4; ++j) M[i][j] = i < 3 && j < 3 ? a[i] * b[j] : 0.f;
192static inline void mat4x4_rotate(mat4x4 R, mat4x4 M,
float x,
float y,
float z,
194 float s = sinf(angle);
195 float c = cosf(angle);
198 if (vec3_len(u) > 1e-4) {
202 mat4x4_from_vec3_mul_outer(T, u, u);
211 mat4x4_scale(S, S, s);
216 mat4x4_scale(C, C, c);
227static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M,
float angle) {
228 float s = sinf(angle);
229 float c = cosf(angle);
230 mat4x4 R = {{1.f, 0.f, 0.f, 0.f},
233 {0.f, 0.f, 0.f, 1.f}};
236static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M,
float angle) {
237 float s = sinf(angle);
238 float c = cosf(angle);
239 mat4x4 R = {{c, 0.f, s, 0.f},
240 {0.f, 1.f, 0.f, 0.f},
242 {0.f, 0.f, 0.f, 1.f}};
245static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M,
float angle) {
246 float s = sinf(angle);
247 float c = cosf(angle);
248 mat4x4 R = {{c, s, 0.f, 0.f},
250 {0.f, 0.f, 1.f, 0.f},
251 {0.f, 0.f, 0.f, 1.f}};
254static inline void mat4x4_invert(mat4x4 T, mat4x4 M) {
258 s[0] = M[0][0] * M[1][1] - M[1][0] * M[0][1];
259 s[1] = M[0][0] * M[1][2] - M[1][0] * M[0][2];
260 s[2] = M[0][0] * M[1][3] - M[1][0] * M[0][3];
261 s[3] = M[0][1] * M[1][2] - M[1][1] * M[0][2];
262 s[4] = M[0][1] * M[1][3] - M[1][1] * M[0][3];
263 s[5] = M[0][2] * M[1][3] - M[1][2] * M[0][3];
265 c[0] = M[2][0] * M[3][1] - M[3][0] * M[2][1];
266 c[1] = M[2][0] * M[3][2] - M[3][0] * M[2][2];
267 c[2] = M[2][0] * M[3][3] - M[3][0] * M[2][3];
268 c[3] = M[2][1] * M[3][2] - M[3][1] * M[2][2];
269 c[4] = M[2][1] * M[3][3] - M[3][1] * M[2][3];
270 c[5] = M[2][2] * M[3][3] - M[3][2] * M[2][3];
273 idet = 1.0f / (s[0] * c[5] - s[1] * c[4] + s[2] * c[3] + s[3] * c[2] -
274 s[4] * c[1] + s[5] * c[0]);
276 T[0][0] = (M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet;
277 T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet;
278 T[0][2] = (M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet;
279 T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet;
281 T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet;
282 T[1][1] = (M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet;
283 T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet;
284 T[1][3] = (M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet;
286 T[2][0] = (M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet;
287 T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet;
288 T[2][2] = (M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet;
289 T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet;
291 T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet;
292 T[3][1] = (M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet;
293 T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet;
294 T[3][3] = (M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet;
296static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) {
301 vec3_norm(R[2], R[2]);
303 s = vec3_mul_inner(R[1], R[2]);
304 vec3_scale(h, R[2], s);
305 vec3_sub(R[1], R[1], h);
306 vec3_norm(R[2], R[2]);
308 s = vec3_mul_inner(R[1], R[2]);
309 vec3_scale(h, R[2], s);
310 vec3_sub(R[1], R[1], h);
311 vec3_norm(R[1], R[1]);
313 s = vec3_mul_inner(R[0], R[1]);
314 vec3_scale(h, R[1], s);
315 vec3_sub(R[0], R[0], h);
316 vec3_norm(R[0], R[0]);
319static inline void mat4x4_frustum(mat4x4 M,
float l,
float r,
float b,
float t,
321 M[0][0] = 2.f * n / (r - l);
322 M[0][1] = M[0][2] = M[0][3] = 0.f;
324 M[1][1] = 2.f * n / (t - b);
325 M[1][0] = M[1][2] = M[1][3] = 0.f;
327 M[2][0] = (r + l) / (r - l);
328 M[2][1] = (t + b) / (t - b);
329 M[2][2] = -(f + n) / (f - n);
332 M[3][2] = -2.f * (f * n) / (f - n);
333 M[3][0] = M[3][1] = M[3][3] = 0.f;
335static inline void mat4x4_ortho(mat4x4 M,
float l,
float r,
float b,
float t,
337 M[0][0] = 2.f / (r - l);
338 M[0][1] = M[0][2] = M[0][3] = 0.f;
340 M[1][1] = 2.f / (t - b);
341 M[1][0] = M[1][2] = M[1][3] = 0.f;
343 M[2][2] = -2.f / (f - n);
344 M[2][0] = M[2][1] = M[2][3] = 0.f;
346 M[3][0] = -(r + l) / (r - l);
347 M[3][1] = -(t + b) / (t - b);
348 M[3][2] = -(f + n) / (f - n);
351static inline void mat4x4_perspective(mat4x4 m,
float y_fov,
float aspect,
355 float const a = 1.f / (float)tan(y_fov / 2.f);
357 m[0][0] = a / aspect;
369 m[2][2] = -((f + n) / (f - n));
374 m[3][2] = -((2.f * f * n) / (f - n));
377static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) {
388 vec3_sub(f, center, eye);
391 vec3_mul_cross(s, f, up);
394 vec3_mul_cross(t, s, f);
416 mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]);
419typedef float quat[4];
420static inline void quat_identity(quat q) {
421 q[0] = q[1] = q[2] = 0.f;
424static inline void quat_add(quat r, quat a, quat b) {
426 for (i = 0; i < 4; ++i) r[i] = a[i] + b[i];
428static inline void quat_sub(quat r, quat a, quat b) {
430 for (i = 0; i < 4; ++i) r[i] = a[i] - b[i];
432static inline void quat_mul(quat r, quat p, quat q) {
434 vec3_mul_cross(r, p, q);
435 vec3_scale(w, p, q[3]);
437 vec3_scale(w, q, p[3]);
439 r[3] = p[3] * q[3] - vec3_mul_inner(p, q);
441static inline void quat_scale(quat r, quat v,
float s) {
443 for (i = 0; i < 4; ++i) r[i] = v[i] * s;
445static inline float quat_inner_product(quat a, quat b) {
448 for (i = 0; i < 4; ++i) p += b[i] * a[i];
451static inline void quat_conj(quat r, quat q) {
453 for (i = 0; i < 3; ++i) r[i] = -q[i];
456static inline void quat_rotate(quat r,
float angle, vec3 axis) {
459 vec3_scale(v, axis, sinf(angle / 2));
460 for (i = 0; i < 3; ++i) r[i] = v[i];
461 r[3] = cosf(angle / 2);
463#define quat_norm vec4_norm
464static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) {
470 vec3 t = {q[0], q[1], q[2]};
471 vec3 u = {q[0], q[1], q[2]};
473 vec3_mul_cross(t, t, v);
476 vec3_mul_cross(u, u, t);
477 vec3_scale(t, t, q[3]);
482static inline void mat4x4_from_quat(mat4x4 M, quat q) {
492 M[0][0] = a2 + b2 - c2 - d2;
493 M[0][1] = 2.f * (b * c + a * d);
494 M[0][2] = 2.f * (b * d - a * c);
497 M[1][0] = 2 * (b * c - a * d);
498 M[1][1] = a2 - b2 + c2 - d2;
499 M[1][2] = 2.f * (c * d + a * b);
502 M[2][0] = 2.f * (b * d + a * c);
503 M[2][1] = 2.f * (c * d - a * b);
504 M[2][2] = a2 - b2 - c2 + d2;
507 M[3][0] = M[3][1] = M[3][2] = 0.f;
511static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) {
514 quat_mul_vec3(R[0], q, M[0]);
515 quat_mul_vec3(R[1], q, M[1]);
516 quat_mul_vec3(R[2], q, M[2]);
518 R[3][0] = R[3][1] = R[3][2] = 0.f;
521static inline void quat_from_mat4x4(quat q, mat4x4 M) {
525 int perm[] = {0, 1, 2, 0, 1};
528 for (i = 0; i < 3; i++) {
535 r = (float)sqrt(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]]);
539 q[1] = q[2] = q[3] = 0.f;
544 q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]]) / (2.f * r);
545 q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]]) / (2.f * r);
546 q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]]) / (2.f * r);